Etpereng Grateres

 Math Virtual Learning

 Math Virtual Learning

 Geometry/Honors Geometry

 Geometry/Honors Geometry}

May 18, 2020

Geometry
 Lesson: May 18, 2020

Objective/Learning Target:
 Describe events as subsets of sample space

Find the area of the shaded region:

10 cm

Bell Ringer Answer:

Solution.

Step 1: Find area of inner square $=2 \mathrm{~cm} \times 2 \mathrm{~cm}=4 \mathrm{~cm}^{2}$
Step 2: Find area of outer shape $=(2 \mathrm{~cm} \times 3 \mathrm{~cm})+(10 \mathrm{~cm} \times 3 \mathrm{~cm})$

$$
\begin{aligned}
& =6 \mathrm{~cm}^{2}+30 \mathrm{~cm}^{2} \\
& =36 \mathrm{~cm}^{2}
\end{aligned}
$$

Step 3: Area of shaded region $=$ area of outer shape - area of inner square

$$
\begin{aligned}
& =36 \mathrm{~cm}^{2}-4 \mathrm{~cm}^{2} \\
& =32 \mathrm{~cm}^{2}
\end{aligned}
$$

Let's Get Started: Go through the following slides and try the example problems.

VOCABULARY:

Some words have special meaning in Probability:

Experiment: a repeatable procedure with a set of possible results.

Example: Throwing dice
We can throw the dice again and again, so it is repeatable.
The set of possible results from any single throw is $\{1,2,3,4,5,6\}$

Outcome: A possible result of an experiment.

Example: Getting a "6"

VOCABULARY:

Sample Space: all the possible outcomes of an experiment.

Example: choosing a card from a deck
There are 52 cards in a deck (not including Jokers)
So the Sample Space is all $\mathbf{5 2}$ possible cards: \{Ace of Hearts, 2 of Hearts, etc... \}

Probability:

In general:

Probability of an event happening $=\frac{\text { Number of ways it can happen }}{\text { Total number of outcomes }}$

Example: Alex wants to see how many times a "double" comes up when throwing 2 dice.

The Sample Space is all possible Outcomes (36 Sample Points):

$$
\{1,1\}\{1,2\}\{1,3\}\{1,4\} \ldots\{6,3\}\{6,4\}\{6,5\}\{6,6\}
$$

The Event Alex is looking for is a "double", where both dice have the same number. It is made up of these 6 Sample Points:

$$
\{1,1\}\{2,2\}\{3,3\}\{4,4\}\{5,5\} \text { and }\{6,6\}
$$

These are Alex's Results:

Experiment	Is it a Double?
$\{3,4\}$	No
$\{5,1\}$	No
$\{2,2\}$	Yes
$\{6,3\}$	No

After 100 Experiments, Alex has 19 "double" Events ... is that close to what you would expect?

Try the next practice problems on your own! An experiment consists of tossing a coin and observing the side that lands up and then rolling a fair 4 -sided die and observing the number rolled. Let H and T represent heads and tails respectively

Given: Sample Space $=\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4\}$
a) What is the event E1 that an even number is rolled?
b) What is the event E2 that a head is tossed or a 3 is rolled?
c) What is the event E3 that a tail is tossed and an odd number is rolled?

Answer Key:

Here you will find the answers to the previous four questions. Check your answers below.
a) $\mathrm{E} 1=\{\mathrm{H} 2, \mathrm{H} 4, \mathrm{~T} 2, \mathrm{~T} 4\}$
b) $\mathrm{E} 2=\{\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{~T} 3\}$
c) $\mathrm{E} 3=\{\mathrm{T} 1, \mathrm{~T} 3\}$

Additional Resources:

Click on the link below to get additional practice and to check your understanding!

Probability Using Sample Spaces Practice

